作业标题:个人研修成果 作业周期 : 2020-03-20 — 2020-04-30
发布范围:全员
作业要求: 根据项目考核要求,实践研修是本次培训的一个重要环节,通过在岗实践、反思、再实践、再反思的良性循环过程,逐步提升实践教学及教育科研能力。现将实践研修成果提交做如下要求,各位学员请在“个人研修成果 ”栏目中根据所发布的要求提交一篇研修成果。由班级辅导教师进行评阅。 题目: 运用所学课程理念尝试去上几节改变自己教学习惯的课,然后把最得意的一节课形成文稿分享出来; 撰写要求层次清楚,观点明确,重点突出,条理清晰,措辞严谨。
发布者:教务管理员
提交者:学员赵东云 所属单位:凤台县第十中学 提交时间: 2020-04-30 17:24:57 浏览数( 7 ) 【举报】
6.1平方根【第三课时】
【知识与技能】
理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
【过程与方法】
通过操作,拼出面积为8的正方形,抽象出无理数的概念。
【情感、态度与价值观】
体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。
【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教学难点】知道无理数的概念,并能正确进行表示。
【教具准备】小黑板 科学计算器
【教学过程】
一、复习导入
1、如果b=-169,那么-b有平方根吗?如果有,写出-b的平方根。
2、填空:
()2= _______________(-)2=_______________
= _______________ =_______________
()2= _______________(-)2=_______________
= _______________ =_______________
二、无理数
1、你能作出面积是8平方厘米的正方形吗?
(学生交流讨论)
2、将一个2×4的长方形,对折两次,得到如下的图形:
沿着折痕DE、EC剪开,得到3个三角形,然后将这三个三角形拼成一个正方形,如图,这个正方形的面积等于原来长方形的面积8平方厘米。
3、分析:面积为8平方厘米的正方形,它的边长是多少呢?它的边长是整数吗?
(估计面积为8平方厘米的正方形的边长的过程,就是一个用有理数无限逼近无理数的过程,这个过程注意不要忽略,一定要让学生动手去感受,体会到无理数是一个无限不循环的小数。)
2.82=7.84, 2.92=8.41
2.822=7.9524, 2.832=8.0089
2.8282=7.997584 2.8292=8.003241
…… ……
从上述数据,能看出什么?
整个正方形的边长比2.8大,比2.9小;比2.82大,比2.83小;比2.828大,比2.829小;……
4、学生汇报,教师引导:
面积为8平方厘米的正方形,它的边长是一个小数点后面的位数可以不断增加的小数。这个小数既不是有限小数,又不是无限循环小数,它叫做无限不循环小数。我们把这种无限不循环小数叫做无理数。
5、由于正方形的边长的平方等于它的面积,因此这个面积为8平方厘米的正方形的边长可以记作。从上述分析可知,是一个无限不循环小数,因此是一个无理数。
6、下列是无理数的有:
,,, ,,,, ,0.12213816……,
7、用科学计算器求出平方根。
学生用科学计算器进行开平方运算,注意不同计算器的使用方法的区别。
三、小结与巩固
1、什么是有理数?什么是无理数?
2、有根号的数都是无理数,没有根号的都是有理数,这种说法对吗?如果不对,请举出反例。
四、教后感: