动量守恒定律教案

发布者:瞿小金     所属单位:玉山县第一中学     发布时间:2016-08-31    浏览数:0

动量守恒定律

  

一、动量守恒定律

1.定律内容:一个系统不受外力或所受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律.

说明:(1)动量守恒定律是自然界中最重要最普遍的守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体,它是一个实验规律,也可用牛顿第三定律和动量定理推导出来.

(2)相互间有作用力的物体系称为系统,系统内的物体可以是两个、三个或者更多,解决实际问题时要根据需要和求解问题的方便程度,合理地选择系统.

2.动量守恒定律的适用条件

(1)系统不受外力或系统所受外力的合力为零.

(2)系统所受外力的合力虽不为零,但FF,亦即外力作用于系统中的物体导致的动量的改变较内力作用所导致的动量改变小得多,则此时可忽略外力作用,系统动量近似守恒.例如:碰撞中的摩擦力和空中爆炸时的重力,较相互作用的内力小的多,可忽略不计.

(3)系统所受合外力虽不为零,但系统在某一方向所受合力为零,则系统此方向的动量守恒,例图6�8,光滑水平面的小车和小球所构成的系统,在小球由小车顶端滚下的过程中,系统水平方向的动量守恒.

3.动量守恒的数学表述形式:

(1)pp′即系统相互作用开始时的总动量等于相互作用结束时(或某一中间状态时)的总动量.

(2)Δp=0即系统的总动量的变化为零.若所研究的系统由两个物体组成,则可表述为:+2′+′(等式两边均为矢量和)

(3)Δp=-Δp

即若系统由两个物体组成,则两个物体的动量变化大小相等,方向相反,此处要注意动量变化的矢量性.在两物体相互作用的过程中,也可能两物体的动量都增大,也可能都减小,但其矢量和不变.

4.应用动量守恒定律的解题步骤

(1)分析题意,明确研究对象(系统).

(2)对系统内的物体进行受力分析,明确内力、外力,判断是否满足动量守恒的条件.

(3)明确研究系统的相互作用过程,确定过程的初、末状态,对一维相互作用问题,先规定正方向,再确认各状态物体的动量或动量表述.

(4)利用守恒定律列方程,代入已知量求解.

(5)依据求解结果,按题目的要求回答问题.

二、碰撞

1.碰撞是指物体间相互作用时间极短,而相互作用力很大的现象.

在碰撞过程中,系统内物体相互作用的内力一般远大于外力,故碰撞中的动量守恒,按碰撞前后物体的动量是否在一条直线区分,有正碰和斜碰,中学物理只研究正碰(正碰即两物体质心的连线与碰撞前后的速度都在同一直线上).

2.按碰撞过程中动能的损失情况区分,碰撞可分为二种:

a.弹性碰撞:碰撞前后系统的总动能不变,对两个物体组成的系统满足:

2′+2′

1/2+1/2′=1/2+1/2

两式联立可得:

′=

′=

.完全非弹性碰撞,该碰撞中动能的损失最大,对两个物体组成的系统满足:

2=(

c.非弹性碰撞,碰撞的动能介于前两者碰撞之间.

三、反冲现象

系统在内力作用下,当一部分向某一方向的动量发生变化时,剩余部分沿相反方向的动量发生同样大小变化的现象.喷气式飞机、火箭等都是利用反冲运动的实例.若系统由两部分组成,且相互作用前总动量为零,则0=方向相反

 

 

 

  

 

动量守恒定律  教案示例

   

一、教学目标

1.知道动量守恒定律的内容,掌握动量守恒定律成立的条件,并在具体问题中判断动量是否守恒。

2.学会沿同一直线相互作用的两个物体的动量守恒定律的推导。

3.知道动量守恒定律是自然界普遍适用的基本规律之一。

二、重点、难点分析

1.重点是动量守恒定律及其守恒条件的判定。

2.难点是动量守恒定律的矢量性。

三、教具

1.气垫导轨、光门和光电计时器,已称量好质量的两个滑块(附有弹簧圈和尼龙拉扣)。

2.计算机(程序已输入)。

四、教学过程

(一)引入新课

前面已经学习了动量定理,下面再来研究两个发生相互作用的物体所组成的物体系统,在不受外力的情况下,二者发生相互作用前后各自的动量发生什么变化,整个物体系统的动量又将如何?

(二)教学过程设计

1.以两球发生碰撞为例讨论“引入”中提出的问题,进行理论推导。

画图:

 

设想水平桌面上有两个匀速运动的球,它们的质量分别是m1和m2,速度分别是v1和v2,而且v1>v2。则它们的总动量(动量的矢量和)p=p1+p2=m1v1+m2v2。经过一定时间m1追上m2,并与之发生碰撞,设碰后二者的速度分别为v1'和v2',此时它们的动量的矢量和,即总动量p'=p1'+p2'=m1v1'+m2v2'。

板书:p=p1+p2=m1v1+m2v2

p'=p1'+p2'=m1v1'+m2v2'

下面从动量定理和牛顿第三定律出发讨论p和p'有什么关系。

设碰撞过程中两球相互作用力分别是F1和F2,力的作用时间是t。根据动量定理,m1球受到的冲量是F1t=m1v1'-m1v1;m2球受到的冲量是F2t=m2v2'-m2v2。

根据牛顿第三定律,F1和F2大小相等,方向相反,即F1t= - F2t。

板书:F1t=m1v1'-m1v1 ①

F2t=m2v2'-m2v2 ②

F1t=-F2t ③

①、②两式代入③式应有

板书:m1v1'-m1v1= - (m2v2'-m2v2)

整理后可得

板书:m1v1'+m2v2'=m1v1+m2v2

或写成    p1'+p2'=p1+p2

就是p'=p

这表明两球碰撞前后系统的总动量是相等的。

分析得到上述结论的条件:

两球碰撞时除了它们相互间的作用力(这是系统的内力)外,还受到各自的重力和支持力的作用,但它们彼此平衡.桌面与两球间的滚动摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。

2.结论:相互作用的物体所组成的系统,如果不受外力作用,或它们所受外力之和为零。则系统的总动量保持不变。这个结论叫做动量守恒定律。

做此结论时引导学生阅读课文。并板书。

∑F=0时    p'=p

3.利用气垫导轨上两滑块相撞过程演示动量守恒的规律。

(1)两滑块弹性对撞(将弹簧圈卡在一个滑块上对撞)

 

光电门测定滑块m1和m2第一次(碰撞前)通过A、B光门的时间t1和t2以及第二次(碰撞后)通过光门的时间t1'和t2'。光电计时器记录下这四个时间。

将t1、t2和t1'、t2'输入计算机,由编好的程序计算出v1、v2和v1'、v2'。将已测出的滑块质量m1和m2输入计算机,进一步计算出碰撞前后的动量p1、p2和p1'、p2'以及前后的总动量p和p'。

由此演示出动量守恒。

注意:在此演示过程中必须向学生说明动量和动量守恒的矢量性问题。因为v1和v2以及v1'和v2'方向均相反,所以p1+p2实际上是|p1|-|p2|=0,同理p1'+p2'实际上是|p1'|-|p2'|。

(2)两滑块完全非弹性碰撞(将弹簧圈取下,两滑块相对面各安装尼龙子母扣)

为简单明了起见,可让滑块m2静止在两光电门之间不动(p2=0),滑块m1通过光门A后与滑块m2相撞,二者粘合在一起后通过光门B。

光门A测出碰前m1通过A时的时间t,光门B测出碰后m1+m2通过B时的时间t'。将t和t'输出计算机,计算出p1和p1'+p2'以及碰前的总动量p(=p1)和碰后的总动量p'。由此验证在完全非弹性碰撞中动量守恒。

(3)两滑块反弹(将尼龙拉扣换下,两滑块间挤压一弹簧片)

将两滑块置于两光电门中间,二者间挤压一弯成∩形的弹簧片(铜片)。同时松开两手,钢簧片将两滑块弹开分别通过光电门A和B,测定出时间t1和t2。

将t1和t2输入计算机,计算出v1和v2以及p1和p2。

引导学生认识到弹开前系统的总动量p0=0,弹开后系统的总动量pt=|p1|-|p2|=0。总动量守恒,其数值为零。

4.例题  甲、乙两物体沿同一直线相向运动,甲的速度是3m/s,乙物体的速度是1m/s。碰撞后甲、乙两物体都沿各自原方向的反方向运动,速度的大小都是2m/s。求甲、乙两物体的质量之比是多少?

引导学生分析:对甲、乙两物体组成的系统来说,由于其不受外力,所以系统的动量守恒,即碰撞前后的总动量大小、方向均一样。

由于动量是矢量,具有方向性,在讨论动量守恒时必须注意到其方向性。为此首先规定一个正方向,然后在此基础上进行研究。

板书解题过程,并边讲边写。

板书:

 

 

 

讲解:规定甲物体初速度方向为正方向。则v1=+3m/s,v2=1m/s。碰后v1'=-2m/s,v2'=2m/s

根据动量守恒定律应有m1v1+m2v2=m1v1'+m2v2'移项整理后可得m1比m2为

代入数值后可得m1/m2=3/5,即甲、乙两物体的质量比为3∶5。

5.练习题  质量为30kg的小孩以8m/s的水平速度跳上一辆静止在水平轨道上的平板车,已知平板车的质量是80kg,求小孩跳上车后他们共同的速度。

分析:对于小孩和平板车系统,由于车轮和轨道间的滚动摩擦很小,可以不予考虑,所以可以认为系统不受外力,即对人、车系统动量守恒。

板书解题过程:

跳上车前系统的总动量  p=mv

跳上车后系统的总动量  p'=(m+M)V

由动量守恒定律有mv=(m+M)V

解得

 

6.小结

(1)动量守恒的条件:系统不受外力或合外力为零时系统的动量守恒。

(2)动量守恒定律适用的范围:适用于两个或两个以上物体组成的系统。动量守恒定律是自然界普遍适用的基本规律,对高速或低速运动的物体系统,对宏观或微观系统它都是适用的。

 

评论
发布

2015年